Session : Algebra And Algebraic Topology

k-Symplectic Affine Lie Algebras

Ilham Aitbrik ${ }^{1}$, Mohamed Boucetta ${ }^{2}$ and Hamid Abchir ${ }^{1,2}$
${ }^{2}$ Laboratoire Algebra, Geometry, Topology and Applications University Cadi-Ayyad, Marrakech ${ }^{1,2}$ Laboratoire Topology, Algebra, Geometry and Discrete Mathematics, University Hassan II, Casablanca.

Abstract

The notion of k-symplectic structures was introduced by A. Awane in his dissertation in $1984\left({ }^{1,2}\right)$. Here we are interested by the classification of Lie algebras provided with such a structure. We introduce also the notion of affine structure associated to a k-symplectic structure on a Lie algebra.

Références

[1] A. Awane, Sur une generalisation des structures symplectiques, These strasbourg, (1984).
[2] M. Puta, Some Remarks on the k-symplectic manifolds, Tensors 47(1988),no.2, 109-115
[3] A. Awane, M.Goze, Pfaffian systems, k-symplectic systems, Kluwer Academic Publishers, (2000).

Capacities in fractional Sobolev spaces with variable exponents
 MOHAMED BERGHOUT

Universitè Ibn Tofail-Kénitra-Maroc

Abstract

The concept of capacity is indispensable to an understanding point-wise behavior of functions in a Sobolev space. In a sense, capacity is a measure of size for sets and they measure small sets more precisely than the usual Lebesgue measure. Sobolev spaces and capacities theory is one of the significant aspects of fine topology, and the classical and fine nonlinear potential theory. In this setting, there are two natural kinds of capacities : Sobolev capacity and relative capacity. Both capacities have their advantages. In this paper we develop a capacities theory connected with the fractional Sobolev spaces with variable exponents. Fundamental proprieties of capacity including Choquet capacity, capacitability and several results, are studied.

Références

[1] M. Berghout, Contributions aux espaces de Sobolev à exposant variable, phd thesis.
[2] M. Berghout and A. Baalal, Compact embedding theorems for fractional Sobolev spaces with variable exponents. Adv. Oper. Theory (2019). https ://doi.org/10.1007/s43036-019-00006-z.
[3] A. Baalal and M. Berghout, Density properties for fractional Sobolev spaces with variable exponents, Ann. Funct. Anal. 10 (2019), no. 3, 308-324.
[4] A. Baalal and M. Berghout, The Dirichlet problem for nonlinear elliptic equations with variable exponent, J. Appl. Anal. Comput. (9) (2019), no. 1, 295-313.
[5] A. Baalal and M. Berghout, Traces and fractional Sobolev extension domains with variable exponent, Int. J. Math. Anal. (12) (2018), no. 2, 85-98.
[6] A. Baalal and M. Berghout, Capacities in fractional Sobolev with variable exponent, under review in mathematische nachrichten.
[7] G. Choquet, Theory of capacities, Ann. Inst. Fourier (5) (1954), 131-295.
[8] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. (2017), Springer-Verlag, Berlin, 2011.

Semiderivations and generalized semiderivations in near-rings

Abdelkarim BOUA ${ }^{1}$
${ }^{1}$ Sidi Mohammed Ben Abdellah University, Polydisciplinary Faculty, LSI, Taza; Morocco

Abstract

Let N be a zero-symmetric prime near-ring. An additive mapping $F: N \rightarrow N$ is said to be a generalized semiderivation associated with a semiderivation d and a map g if it satisfies $F(x y)=F(x) y+g(x) d(y)=$ $d(x) g(y)+x F(y)$ and $F(g(x))=g(F(x))$ for all $x, y \in N$. The purpose of this paper is to extend some results concerning generalized derivations of prime near rings to generalized semiderivations. Moreover, example is provided to show the necessity for N to be prime and g to be an automorphism in the hypothesis of the theorems. When, $g=i d_{N}$, one can easily obtain the main results of [5] and [9].

Références

[1] M. Ashraf and A. Boua, On semiderivations in 3- prime near rings, commun. Korean Math. Soc., 31(2016), No.3, 433-445.
[2] A. Ali, H. E. Bell, R. Rani and P. Miyan, On semiderivations of prime near rings, Southeast Asian Bull. Math., 40 (2016), 321-327.
[3] H. E. Bell, On derivations in near-rings. II, Nearrings, nearfields and K-loops (Hamburg, 1995), 1910-197, Math. Appl., 426, Kluwer Acad. Publ., Dordrecht, 1997.
[4] J. Bergen, Derivations in prime rings, Canad. Math. Bull., 26 (1983), 267-270.
[5] A. Boua and L. Oukhtite, Some conditions under which near-rings are rings, Southeast Asian Bull. Math., 37 (2013) 325-331.
[6] A. Boua and L. Oukhtite, Semiderivations satisfying certain algebraic identities on prime near-rings, Asian-Eur. J. Math., 6 (2013), no. 3, 1350043, 8 pp.
[7] A. Boua, L. Oukhtite and A. Raji, On generalized semiderivations in 3-prime near-rings, Asian-Eur. J. Math., Vol. 9, No. 2 (2016) 1650036 (11 pages)
[8] A. Boua, A. Raji, A. Ali and F. Ali, On generalized semiderivations of prime near rings, Int. J. Math. Math. Sciences (2015), Article ID 867923, 7 pages.
[9] Y. Shang, A Note on the commutativity of prime near-rings, Algebra Colloquium, 22 (3) (2015), 361-366.
[10] X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc., 121 (1994), no. 2, 361-366.

Relatively Cyclic P-Contractions in Locally K-Convex Space

M.EDRAOUI ${ }^{1}$, M.AAMRI ${ }^{2}$ and S.LAZAIZ ${ }^{3}$
${ }^{1}$ Laboratory of Algebra Analysis and Applications (L3A)Casablanca.
${ }^{2}$ Laboratory of Mathematical Analysis and Applications, Department of Mathematics, ${ }^{3}$ Dhar El Mahraz Faculty of Sciences, University Sidi Mohamed Ben Abdellah, Fes 30050, Morocco

Abstract

: Our main goal of this research is to present the theory of points for relatively cyclic and relatively noncyclic p-contractions in complete locally K\{convex spaces by providing basic conditions to ensure the existence and uniqueness of _xed points and best proximity points of the relatively cyclic and relatively noncyclic p-contractions map in locally K-convex space.

References :

[1] Monna, A.F. Analyse Non-Archimedienne ; Springer-Verlag : Berlin/Heidelberg, Germany ; New York, NY, USA, 1970.
[2] Roovij, A.C.M.V. Non-Archimedean Functional Analysis ; Marcel Dekker : New York, NY, USA, 1978.
[3] Van Tiel, J. Espaces localement K-convexes I\{III. Indag. Math. 1965, 27, 249\{258, 259\{272, 273\{289.
[4] Perez-Garcia, C. ; Schikhof, W.H. Locally Convex Spaces over Non-Archimedean Valued Fields. In Cambridge Studies in Advanced Mathematics ; Cambridge University Press: Cambridge, UK, 2010.
[5] Ciric, L.B. A generalization of Banachscontraction principle. Proc. Am. Math. Soc.
[6] Kirk, W.A. ; Srinivasan, P.S. ; Veeramani, P. Fixed points for mappings satisfying cyclical Contractive conditions. Fixed Point Theory 2003, 4, 79\{89.
[7] Eldred, A. ; Kirk, W.A. ; Veeramani, P. Proximal normal structureand relatively nonexpansive map-pings. Stud. Math. 2005, 171, $283\{293$.
[8] Edraoui, M. ; Aamri, M. ; Lazaiz, S. Fixed Point Theorem in Locally K-Convex Space. Int. J. Math Anal. 2018, 12, $485\{490$.
[9] Abkar, A. ; Gabeleh, M. Global optimal solutions of noncyclic mappings in metric spaces. J. Optim.Theory Appl. 2012, 153, 298\{305.

Fixed Point Theorems of Block Operator Matrices On Banach Algebras

M.A.FARID ${ }^{1}$, K.Chaira ${ }^{2}$, E.M.Marhrani ${ }^{1}$ and M.Aamri ${ }^{1}$
${ }^{1}$ Laboratory of Algebra, Analysis and Applications (L3A), Hassan II University, Casablanca
${ }^{2}$ CRMEF Rabat-Salé-Zemmour-Zaer, Rabat

Abstract

Fixed point theory is one of the famous and traditional theories in mathematics and has a large number of applications in various fields of pure and applied mathematics, as well as in physical, chemical, life and social sciences. In this work we are concerned with fixed point results on Banach algebras of operators defined by a 2×2 block operator matrix

$$
\left(\begin{array}{cc}
A & B \cdot B^{\prime} \\
C & D
\end{array}\right)
$$

where the entries of the matrix are in general nonlinear operators defined on Banach algebras. Our results are formulated using the weak topology.

Références

[1] N. Kaddachi, A. Jeribi and B. Krichen,, Fixed point theorems of block operator matrices On Banach algebras and an application to functional integral equations, Math. Meth. Appl. Sci., 36(2013) : 659-673.
[2] A. Jeribi, N. Kaddachi, B. Krichen, Fixed-Point Theorems for Multivalued Operator Matrix UnderWeak Topology with an Application, Bull. Malays. Math. Sci. Soc., (2019) : 1-21.

Classification of links up to link-homotpy using Milnor invariants

S. Hamri
Laboratory of Topology, Algebra, Geometry and Discrete Structures, Hassan II University, Casablanca

Abstract

One of the main problems of Knot theory is the classification of links (i.e. embeddings of several disjoint circles into the space,). Links are classified up to many equivalence relations. Link-homotopy, which was introduced by Milnor in 1954 [1], is one of these equivalence relations. Two links are link-homotopy equivalent if one can be transformed into the other by a finite sequence of ambient isotopies where no crossing change is allowed between distinct components of the link but crossing changes are allowed on the same component. In [1] Milnor classified links with up to three components using some numerical invariants called Milnor Invariants.. A complete classification of links up to link homotopy was given in [2] by Habegger and Lin in 1990. In this talk we will introduce Milnor's definition of these invariants and give his classification of links with up to three components up to link-homotopy.

Références

[1] J. W. Milnor, Link groups, Ann. of Math. (2) 59 (1954) : 177-195.
[2] N. Habbeger and X. S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. , 3(1990) : 384-419.

ON THE TORAL RANK CONJECTURE AND SOME CONSEQUENCES

M.A.HILALI ${ }^{a}$, H.AAYA ${ }^{a}$, M.R.HILALI ${ }^{a}$ and T.JAWAD ${ }^{a}{ }^{1}$
${ }^{a}$ Faculté des Sciences Ain Chock.

Abstract

The aim of this work is to improve the lower bound of the Puppe inequality. His theorem [15, Theorem 1.1] states that the sum of all Betti numbers of a well-behaved space X is at least equal to 2 n , where n is rank of an n -torus T^{n} acting almost freely on X .

Key words: Puppe inequality, Betti numbers, almost free action of a maximal torus, rational homotopy groups, rational cohomology groups.
AMS subject classification: 55P62

References

[1] C. Allday and S. Halperin, Lie group actions on spaces of finite rank, Quart. J. Math. Oxford (2) 29 (1978) 63-76.
[2] C. Allday and V. Puppe, Cohomological methods in transformation groups, volume 32 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
[3] C. Allday and V. Puppe, On the localization theorem at the cochain level and free torus actions, Algebraic topology Göttingen 84, Procedings, Springer lect. notes in Math 1172 (1985) 1-16.
[4] M. Amann, Cohomological consequences of almost free torus actions arXiv:1204.6276v1 27 Apr 2012.
[5] A. Borel, Seminar on transformation groups Ann. of math Studies $n^{\circ} 46$. Princeton New Jersey.
[6] E. H. Brown, Twisted tensor product I, Ann. of Math vol. 69 (1959) 223-246.
[7] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, volume 205 of Graduate Texts in Mathematics. Springer-Verlag, New Yo, 2001.

[^0][8] Y. Félix, J. Oprea, and D. Tanré, Algebraic models in geometry, volume 17 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2008.
[9] S. Halperin, Finiteness in the minimal models of Sullivan, Trans.A.M.S. 230 (1977) 173-199.
[10] S. Halperin, Rational homotopy and torus actions, London Math. Soc. Lecture Note Series 93, Cambridge Univ. Press (1985) 293-306.
[11] M. R. Hilali, Sur la conjecture de Halperin relative au rang torique. Bull. Belg. Math. Soc. Simon Stevin 7 (2000), no. 2, 221-227.
[12] M. R. Hilali, Actions du tore T^{n} sur les espaces simplement connexes. Thèse à l'Université catholique de Louvain, (1990).
[13] W. Y. Hsiang, Cohomology theory of topological transformation groups, Berlin-HeidelbergNew York, Springer 1975.
[14] I. M. James, reduced product spaces, Ann. of math 82 (1955)170-197.
[15] V. Puppe, Multiplicative aspects of the Halperin-Carlsson conjecture, Georgian Mathematical Journal, 2009, 16:2, pp. 369-379, arXiv 0811.3517.
[16] V. Puppe, On the torus rank of topological spaces, Proceding Baker 1987.
[17] I. R. Shafarevich, Basic Algebraic Geometry, 2 Vols., Springer, 1994.
[18] Yu. Ustinovskii, On almost free torus actions and Horroks conjecture, 2012, arXiv 1203.3685 v 2 .

P-Coloring of Knots and Links

Soukaina LAMSIFER
Laboratory of Topology, Algebra, Geometry and Discrete Structures, Hassan II University, Casablanca

Abstract

One of the main problems in knot theory is determining whether two knots are equivalent or not Thus, knot invariants are constructed to distinguish between different knots. One of these invariants is called p-colorability of knots. In 1961 Fox [1] introduced a method of coloring diagrams of knots by Zp (the integers modulo p). In 1990, Harary and Kauffman [2] defined the minimum number of colors of a pcolorable knot with considering p as an odd prime, this minimum number is also a knot invariant and it is in general hard to calculate, for this reason Takuji Nakamura, Yasutaka Nakanishi, and Shin Satoh introduced [3] the notion of a graph associated with a Fox p-coloring of a knot to show that any nontrivial p-coloring requires at least $\left\lfloor\log _{2} p\right\rfloor+2$ colors. In this talk, we will introduce the definition of the minimum number of colors needed to produce a non-trivial p-coloring of a knot and the lower bound to estimate this minimum number.

Références

[1] R. H. Fox, A quick trip through knot theory, 1962 Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) pp.120-167 Prentice-Hall, Englewood Cliffs, N.J.
[2] F. Harary and L.H. Kauffman : Knots and graphs, I, Arc graphs and colorings, Adv. in Appl. Math. 22 (1999), 312-337
[3] T. Nakamura, Y. Nakanishi, S. Satoh, The palette graph of a Fox coloring, Yokohama Math. J. 59 (2013), 91-97.

A constructive proof of Khamsi-Kirk-Pouzet fixed point theorem

A. Eladraoui ${ }^{1}$, M. Kabil ${ }^{2}$ and $\underline{\text { S. } \text { Lazaiz }^{3}}$
${ }^{1}$ L3A laboratory, Ben Msik faculty of Sciences, University Hassan II of Casablanca
${ }^{2}$ Laboratory of Mathematics and Applications, Faculty of Sciences and Technologies Mohammedia, University Hassan II of Casablanca
${ }^{3}$ Department of Mathematics, Dhar El Mahraz faculty of Sciences, University Mohamed Ben Abdellah of Fez.

Abstract

In this work, we prove that if a generalized metric space (E, d) has a compact and normal structure then every nonexpansive mapping has a fixed point. Our proof differs from that given by the authors in [1], since it adapt a constructive lemma due to Gillespie and Williams [2]. As usual, we obtain Tarski's fixed point theorem as a corollary.

Références

[1] M. A. Khamsi and M. Pouzet, A fixed point theorem for commuting families of relational homomorphisms. application to metric spaces, oriented graphs and ordered sets, arXiv preprint arXiv :1805.02594, 2018.
[2] A. A. Gillespie and B. B. Williams, Fixed point theorem for non-expansive mappings on banach spaces with uniformly normal structure, Applicable Analysis, 9(2) :121-124, 1979.

Homoderivations and Jordan right ideals in 3-prime near-rings

Samir.Mouhssine ${ }^{1}$ and Abdelkarim.Boua ${ }^{2}$
${ }^{1}$ Laboratoire Siences de l'ingénieur ,Université Sidi Mohammed Ben Abdellah ,FP Taza
${ }^{2}$ Laboratoire Siences de l'ingénieur ,Université Sidi Mohammed Ben Abdellah ,FP Taza

Abstract

Let \mathcal{N} be a prime near-ring with center $Z(\mathcal{N})$ and \mathcal{J} a nonzero Jordan ideal of \mathcal{N}. The aim of this paper is to prove some theorems showing that \mathcal{N} must be commutative if it admits a homoderivation h satisfying any one of the following properties : $(i) h(\mathcal{N}) \subseteq Z(\mathcal{N}),(i i) h([x, y]=0,(i i i) h([x, y]=[x, y]$ for all $x, y \in N$ and $(i v) h(\mathcal{J})=\{0\}$. On the other hand, we show that there is no nonzero homoderivation h satisfying any one of the following properties : $(v) h(x \circ y)=0,(v i) h(x \circ y)=x \circ y,(v i i) h([x, y])=x \circ y$ for all $x, y \in N$, and $(v i i i) h(j)=$ $j,(i x) h(i j)=i j$ for all $j \in \mathcal{J}$. Moreover, we give some examples which show that the hypotheses placed in our results are not superfluous.

Références

[1] A. Al-Kenani, A. Melaibari \& N. Muthana, Homoderivations and commutativity of *-prime rings, EastWest J. of Mathematics : Vol. 17, No 2 (2015) pp. 117-126.
[2] H. E. Bell \& G. Mason, On derivations in near-rings, In near-rings and near-fields North Holland Math. Studies, 137 (1987). 31-35.
[3] H. E. Bell \& M. N. Daif, On derivations and commutativity in prime rings Acta. Math. Hungar., 66 (4)(1995), 337-343.
[4] H. E. Bell, A. Boua \& L. Oukhtite, Semigroup ideals and commutativity in 3-prime near-rings, 137 (2015), 1757-1770.
[5] A. Boua \& L. Oukhtite, Generalized derivations and commutativity of prime near-rings, J. Adv. Res. Pure Math, 3 (2011), 120-124.
[6] A. Boua, L. Oukhtite \& A. Raji, Jordan ideals and derivations in prime near-rings, Comment. Math. Univ. Carolin. 55, 2 (2014) 131139.
[7] A. Boua, Commutativity of Near-rings With Certain Constrains on Jordan Ideals, Bol. Soc. Paran. Mat. (3s.) v. 364 (2018), 159170.
[8] M. N. Daif \& H. E. Bell,Remarks on derivations on semi prime rings, Internat. J. Math. Math. Sci., 15 (1992), 205-206
[9] G. Pilz,Near-rings,second edition, North-Holland Mathematics Studies, 23, NorthHolland Publishing Co., Amsterdam, 1983.
[10] A. Melaibari, N. Muthana \& A. Al-KenaniOn, Homoderivations in Rings, Gen. Math. Notes, Vol. 35, No. 1, July 2016, pp.1-8.
[11] Y. Shang, A study of derivations in prime near-rings, Mathematica Balkanica., 25 (2011), 413-418.
[12] Y. Shang, A Note on the commutativity of prime near-rings, Algebra Colloq., 22 (2015), 361-366.
[13] El Sofy , Rings with some kinds of mappings. M. Sc. Thesis, Cairo University, Branch of Fayoum Cairo, Egyp,,MM(2000)

[^0]: ${ }^{1}$ moahilali@gmail.com

