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A NOTE ON w-SPLIT MODULES

REFAT ABDELMAWLA KHALED ASSAAD1 and FUAD ALI AHMED ALMAHDI2

1Department of Mathematics, Faculty of Science, University Moulay Ismail Meknes, Morocco
2Department of Mathematics, Faculty of Science, King Khalid University Abha, Saudi Arabia

Abstract

In this communication, we introduce and study some properties of w-split modules. And we use these
modules to characterize some classical rings, for example we will prove that a ring R is von Neumann
regular rings if and only if every finitely presented R-module is w-split, and R is semi-simple ring if and
only if every R-module is w-split. And we introduce the w-split dimensions of modules. The relation
between projective dimension and w-split dimension will be discussed.
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SOME FACTORIZATION PROPERTIES OF THE COMPOSITE

RING A+B[Γ ∗]

B. Boulayat1, S. El Baghdadi1

1Laboratoire de Mathématiques et Applications, FST, Beni Mellal

Résumé

Let A ⊆ B denote an extension of commutative integral rings with identity, Γ a nonzero torsion-free
(additive) grading monoid with Γ ∩−Γ = {0} and Γ ∗ = Γ \ {0}. B[Γ] is the semigroup ring of Γ over B.
In this talk, we will discuss some factorization properties of the pullback A+B[Γ∗] = {f ∈ B[Γ]|f(0) ∈ A}.

Références
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STRONGLY PRIMARY IDEALS IN RINGS WITH
ZERO-DIVISORS

A. Elkhalfi, N. Mahdou and Y. Zahir

Laboratory of Modeling and Mathematical Structures,
Department of Mathematics, Faculty of Science and Technology of Fez,

Box 2202, University S.M. Ben Abdellah Fez, Morocco.

Résumé/Abstract

Let A be an integral domain with quotient field K. Badawi and Houston called a strongly primary ideal
I of A if whenever x, y ∈ K and xy ∈ I, we have x ∈ I or yn ∈ I for some n ≥ 1. In this note, we study
the generalization of strongly primary ideal to the context of arbitrary commutative rings. We define a
primary ideal of A to be strongly primary if for each a, b ∈ A, we have aP ⊆ bA or bnA ⊆ anP for some
n ≥ 1.
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On Armendariz-like properties

L. ES-SALHI1 and M. CHHITI2

1Laboratoire ”Modélisation et Structures Mathématiques”, Université Sidi mohamed ben abdellah, Fes
2Laboratoire ”Modélisation et Structures Mathématiques”, Université Sidi mohamed ben abdellah, Fes

Résumé/Abstract

Let f : A → B be a commutative ring homomorphism and let J be an ideal of B .
The amalgamation of A with B along J with respect to f is the subring of A×B given by

A ./f J := {(a, f(a) + j)|a ∈ A, j ∈ J }

In this talk , we give a characterization for A ./f J to be an Armendariz ring, nil Armendariz ring and
weak ring.
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Residual coordinate over one-dimensional rings

M. El Kahoui, N. Essamaoui and M. Ouali

Departement of Mathematics, Faculty of Sciences Semlalia
Cadi Ayyad university, Marrakesh.

Abstract

This is a joint work with my PhD project supervisors M’hammed El Kahoui and Mustapha Ouali.

Throughout, all considered rings are commutative with unity. Given a ring R we denote by R[n] the
polynomial ring in n variables over R. A polynomial q in A = R[n] is said to be a coordinate if A =
R[q][n−1], i.e., q is a component of an R-automorphism of R[n]. It is said to be a stable coordinate if q is
a coordinate of R[n+m] for some m ≥ 1.

Given a prime ideal p of R, we denote by K(p) the residue field Rp/pRp. A polynomial q in A is said
to be a residual coordinate if for every prime ideal p of R we have K(p) ⊗R A = (K(p) ⊗R R[q])[n−1]. A
natural question that stands for a long time is whether a given polynomial q in R[n] is a coordinate or at
least a stable coordinate. For n = 2, Bhatwadekar and Dutta [1] proved that every residual coordinate
is a stable coordinate over any noetherian ring. In a work of van Rossum and van den Essen [5] the
noetherianity assumption is dropped when R contains Q. In 2014, this result has been generalized by
Das and Dutta [2] to higher dimension n ≥ 3. But the question of how many variables need to be added
in not treated neither in [1] nor in [2]. In the particular case R = K [1], where K is algebraically closed
and contains the rationals, El Kahoui and Ouali [4] proved that every residual coordinate over R is a
1-stable coordinate. More recently, Dutta and Lahiri [3] showed that the same result holds if R is an affine
algebra, over an algebraically closed field K, of Krull dimension 1 such that either K contains Q or Rred

is seminormal. In this talk we will show that such a result still holds over a large class of one-dimensional
rings including arbitrary affine algebras over algebraically closed fields as well as noetherian complete
local rings containing a field.
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On the spectral reconstruction problem for digraphs

E. Bankoussou-mabiala1, A. Boussäıri1, A. Chäıchaâ1, B. Chergui1 and S. Lakhlifi1

1Laboratoire de Topologie, Algèbre, Géométrie et Mathématiques Discrètes, Faculté des Sciences Aı̈n
Chock, Université Hassan II, Casablanca

Résumé/Abstract

The idiosyncratic polynomial of a graph G with adjacency matrix A is the characteristic polynomial of
the matrix A + y(J − A − I), where I is the identity matrix and J is the all-ones matrix. It follows
from a theorem of Hagos (2000) combined with an earlier result of Johnson and Newman (1980) that the
idiosyncratic polynomial of a graph is reconstructible from the multiset of the idiosyncratic polynomial
of its vertex-deleted subgraphs.For a digraph G with adjacency matrix A, we define its idiosyncratic
polynomial as the characteristic polynomial of the matrix A+y(J−A−I)+zAt. By forbidding two fixed
digraphs on three vertices as induced subdigraphs, we prove that the idiosyncratic polynomial of a digraph
is reconstructible from the multiset of the idiosyncratic polynomial of its induced subdigraphs on three
vertices. As an immediate consequence, the idiosyncratic polynomial of a tournament is reconstructible
from the collection of its 3-cycles. Another consequence is that all the transitive orientations of a
comparability graph have the same idiosyncratic polynomial.
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The F − lim of a collection of zero dimensional rings

Hassan Mouadi1, Driss Karim1

1Faculty of Sciences and Technology
University Hassan 2 of Casablanca

19, Tarik Bnou Ziad Street, Hospitals, Casablanca Morocco

Abstract

Let R be a subring of a ring S. The first goal of this work is to define the F − lim of the set Z(R,S).
Then we give a characterization of Z(R,S) by using the F− lim. Thereby, its relationship with ultrafilter
limit and the direct limit of a family of rings.
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 Laboratoire De Mathématiques et applications, Université Hassan 2, FSTM Mohammedia 

 
Résumé /Abstract :  
 
Parmi les protocoles de la cryptographie quantique existants, on compte notamment les 
protocoles de partage de secret. Ils consistent en la distribution d’un secret classique ou 
quantique entre plusieurs personnes qui doivent se concerter pour pouvoir y accéder. Les 
protocoles de partage de secret constituent une primitive cryptographique dont le cas classique a 
été largement traité  mais dont les analogues quantiques laissent la place à plusieurs 
améliorations. 
 
Notre travail traite de l’utilisation des états graphes dans les protocoles de partage de secret 
quantique et de l’étude des structures des graphes associés. 
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Graded almost pseudo-valuation domains

C. Bakkari1, N. Mahdou2 and A. Riffi1,2

1Faculty of Science, University Moulay Ismail, Meknes
2Faculty of Science and Technology, University S. M. Ben Abdellah, Fez.

Résumé/Abstract

let Γ be an arbitrary torsionless grading monoid. In this talk, we introduce the notion of Γ-graded almost
pseudo-valuation domains, and we provide their elementary properties.
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On (−2)-spectrally monomorphic tournaments related to their
adjacency matrices

Abderrahim BOUSSAIRI1, Abdelhak CHAICHAA2 and Imane SOUKTANI1,2
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Abstract

Let T = (V,A) be a tournament on n vertices. The adjacency matrix of the tournament T is the n × n
matrix A = (aij) in which aij = 1 if (vi, vj) ∈ A and 0 otherwhise. A tournament matrix is a {0, 1}-matrix
A such that A + At = J − I, where I and J will (respectively) denote the n × n identity matrix and
all-ones matrix. We say that a tournament matrix is (−2)-monomorphic if all its principal submatrices
of order n−2 are isomorphic. Moreover, we say that it is (−2)-spectrally monomorphic if all its principal
submatrices of order n − 2 have the same characteristic polynomials. In the present paper, we give a
characterization of (−2)-spectrally monomorphic tournaments related to their adjacency matrices.
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extensions of graded rings
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Résumé/Abstract

Throughout this work R be a commutative ring and Γ a semigroup which acts on the multiplicative
semigroup (R∗,×).For any 2-cocycle α in Z2(Γ, R∗), we define the weak crossed product A = R[Γ, α] as
the Γ-graded R-algebra A = ⊕σ∈ΓAσ = ⊕σ∈ΓRuσ where uσuτ = α(σ, τ)uστ and uσr = rσuσ. Our main
interest will be to study some Galois extensions of the weak crossed product A = R[Γ, α]. Such study
required to characterize the separability of graded rings extensions, graded projective R[Γ, α]-modules
and to search the structure and generators of fixed rings. In this work we generalize some new results
concerning Galois extensions over graded rings
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On SA-rings

N. Mahdou1 and Y. Zahir1

1 Laboratory of Modeling and Mathematical Structures, Sidi Mohamed Ben Abdellah University, Fez

Abstract

Let R be a commutative ring with identity. In this paper, we pursue the investigation of the SA-ring
property introduced in [2], in the context of commutative ring with identity. A ring A is called SA-ring if
for every two ideals I, J of R there is an ideal K such that Ann(I) +Ann(J) = Ann(K). Specificaly, our
field of intrest is to examine how this property behave with respect to localization, direct product, trivial
ring extension and the amalgamation of rings along an ideal. Along the way, we give new and original
examples of SA-rings.
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About the realizability of 3-uniform hypergraphs

Abderrahim Boussäıria 1 Brahim Cherguia 2 Pierre Illeb 3 Mohamed Zaidia 4

aFaculté des Sciences Aı̈n Chock, Département de Mathématiques et Informatique,
Km 8 route d’El Jadida, BP 5366 Maarif, Casablanca, Maroc

bAix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Abstract

Let H be a 3-uniform hypergraph. A tournament T defined on V (T ) = V (H) is a realization of H if the
edges of H are exactly the 3-element subsets of V (T ) that induce 3-cycles. We characterize the 3-uniform
hypergraphs that admit realizations by using a suitable modular decomposition.

Key words : hypergraph, 3-uniform, module, tournament, realization..
AMS subject classification : (2010) : 05C65, 05C20.
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