Session : Algebra And Harmonic Analysis

Some important results concerning quadratic type functional equations on semigroups

A. Akkaoui ${ }^{1}$, M. El Fatini ${ }^{1}$, B. Fadli ${ }^{2}$ and D. Zeglami ${ }^{3}$,
${ }^{1}$ Faculty of Sciences, IBN TOFAIL University, Kenitra.
${ }^{2}$ Faculty of Sciences, Chouaib Doukkali University, El Jadida.
${ }^{3}$ E.N.S.A.M, Moulay ISMAIL University, MEKNE.

Abstract

Let $(S,+)$ be an abelian semigroup, let σ be an involution of S, let X be a linear space over the field $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let μ, ν be linear combination of Dirac measures. In the present paper, we find the general solution $f, g: S \rightarrow X$ of the following functional equation $$
\int_{S} f(x+y+t) d \mu(t)+\int_{S} f(x+\sigma(y)+t) d \nu(t)=f(x)+g(y), \quad x, y \in S
$$

in terms of additive and bi-additive maps. Many consequences of this result are presented.

Références

[1] J. Aczél, The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, Glas. Mat.-Fiz. Astronom. 2 (1965), 65-73.
[2] A. Charifi, R. Lukasik and D. Zeglami, A special class of functional equations, Math. Slovaca 68(2) (2018), 397-404.
[3] B. Fadli, D. Zeglami and S. Kabbaj, On a Gajda's type quadratic equation on a locally compact abelian group, Indagationes Math. 26(4) (2015), 660-668.

ON CLASSES OF HARMONIC FUNCTIONS OF CARLEMAN TYPE

E. BENDIB
Université CADI AYYAD, SAFI

Abstract

Let f be harmonic functions on the unit disk \mathbb{D}, of the complex plane \mathbb{C}. We show that f can be expanded in a series $f=\sum_{n} f_{n}$, where f_{n} is a harmonic function on $\mathbb{D}_{n, \Gamma, A}$ satisfying $\sup _{z \in \mathbb{D}_{n, \Gamma, A}}\left|f_{n}(z)\right| \leq C \rho^{n}$ for some constants $C>0$ and $0<\rho<1$, and where $\left(\mathbb{D}_{n, \Gamma, A}\right)_{n}$ is a suitably chosen sequence of decreasing neighborhoods of the closure of \mathbb{D}. Conversely, if f admits such an expansion then f is of Carleman type. The decrease of the sequence $\left(\mathbb{D}_{n, \Gamma, A}\right)_{n}$ characterizes the smoothness of f. These constructions are perfectly explicit.

Références

[1] T.Belghiti and L.Gendre, ON CLASSES of HARMONIC FUNCtionS OF GEVREY TYPE, East journal of approximations, 10(2004) : 413-418.
[2] E. Bendib , on classes of harmonic functions of carleman type, Pub Inst Math, Nouv Série, tome 104(118), (2018), 217-222.

Some Results of $*-K-g$ frames in Hilbert C^{*}-module

Hatim.LABRIGUI ${ }^{1}$, Samir.KABBAJ ${ }^{2}$
${ }^{1}$ Laboratoire AMGNCA, UniversitÃⒸ Ibn Tofail, KÃⒸnitra
${ }^{2}$ Laboratoire AMGNCA, UniversitÃ© Ibn Tofail, KÃ@nitra

R $\tilde{\mathbf{A}}^{(C)}$ sum $\tilde{\mathbf{A}}^{(C)} / \mathbf{A b s t r a c t}$

Frame theory is recently an active research area in mathematics, computer science, and engineering with many exciting applications in a variety of different fields. Frames were first introduced in 1952 by Duffin and Schaefer in the study of nonharmonic fourier series. The theory of frames has been generalized rapidly and various generalizations of frames in Hilbert spaces and Hilbert C^{*}-modules.
In this research work, we study some properties of the $*-K$-g-frame in Hilbert C^{*}-modules and we establish some new results.

Références

[1] S. T. Ali and J. P. Antoine and J. P. Gazeau, Continuous frames in Hilbert spaces, Annals of Physics, 222 (1993) : 1-37
[2] A.Alijani, Generalized Frames with \mathcal{C}^{*}-Valued Bounds and their Operator Duals, Filomat $29: 7$, 1469 ?1479 DOI 10.2298/FIL1507469A (2015).
[3] O. Christensen, An Introduction to Frames and Riesz bases, Brikhouser,2016. J.B.Conway, A Course In Operator Theory, AMS, V.21, 2000.
[4] F. R. Davidson, \mathcal{C}^{*}-algebra by example, Fields Ins. Monog. 1996.
[5] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
[6] M. Frank and D. R. Larson, Frames in Hilbert \mathcal{C}^{*}-modules and \mathcal{C}^{*}-algebras, J. Oper. Theory 48 (2002), 273-314.
[7] A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert \mathcal{C}^{*}-modules, Proc.Indian Acad. Sci.,117, No. 1, 1-12, 2007.
[8] X.Fang and J.Yu and H.Yao, Solutions to operators equation on Hilbert C^{*}-modules, Linear Algebra Appl., 431(11) (2009), 2142 ?2153.
[9] L. C. Zhang, The factor decomposition theorem of bounded generalized inverse modules and their topological continuity, J. Acta Math. Sin., 23 (2007), 1413-1418.

On linear Dynamical Systems of elementary operators

H. Lakrimi ${ }^{1}$, M. Amouch ${ }^{1}$
${ }^{1}$ Department of Mathematics, University Chouaïb Doukkali, Faculty of Science, El-jadida

Abstract

Let X be a Banach space with $\operatorname{dim} X>1$ such that its topological dual X^{*} is separable and $\mathcal{B}(X)$ the algebra of all bounded linear operators on X. In the present work, we introduce the notion of mixing recurrent and we investigate the study of recurrent and mixing recurrent for elementary operators on an admissible Banach ideal $\left(J,\|\cdot\|_{J}\right)$ of $\mathcal{B}(X)$. Also, we study the passage of property of being supercyclic from an operator $T \in \mathcal{B}(X)$ to the left and the right multiplication L_{T} and R_{T} induced by T on an admissible Banach ideal of operators $\left(J,\|\cdot\|_{J}\right)$. In particular, we show that (i) T satisfies the supercyclicity criterion on X if and only if L_{T} is supercyclic on $\left(J,\|\cdot\|_{J}\right)$. (ii) T^{*} satisfies the supercyclicity criterion on X^{*} if and only if R_{T} is supercyclic on $\left(J,\|\cdot\|_{J}\right)$. (iii) $T \oplus T$ is recurrent on $X \bigoplus X$ if and only if L_{T} is recurrent on $\left(J,\|\cdot\|_{J}\right)$. (iv) T is mixing recurrent on X if and only if L_{T} is mixing recurrent on $\left(J,\|\cdot\|_{J}\right)$.

Références

[1] F. Bayart and E. Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, Vol 179(2009).
[2] J. Bonet, F. Martinez-Gimenez and A. Peris, Universal and chaotic multipliers on spaces of operators, Journal of mathematical analysis and applications, Vol 297(2004) : 599-611.
[3] G. Costakis, A. Manoussos and I. Parissis, Recurrent Linear Operators, Complex Analysis and Operator Theory, Vol 8(2014) : 1601-1643.
[4] C. Gilmore, Dynamics of Generalised Derivations and Elementary Operators, Complex Analysis and Operator Theory, Vol 13(2019) : 257-274.
[5] M. Gupta and A. Mundayadan, Supercyclicity in spaces of operators, Results in Mathematics, Vol 70(2016) : 95-107.
[6] B. Yousefi, H. Rezaei and J. Doroodgar, Supercyclicity in the operator algebra using HilbertSchmidt operators, Rendiconti del Circolo Matematico di Palermo, Vol 56(2007) : 33-42.

Continuous Frame With C^{*}-Valued Bounds

Mohamed Rossafi and Samir Kabbaj
Laboratoire AMGNCA, Université Ibn Tofail, Kénitra

Abstract

Frame theory is an exciting, dynamic and fast paced subject with applications in numerous elds of mathematics and engineering. In this talk, we study Continuous Frame and introduce Continuous Frame with C^{*}-valued bounds. Also, we establich some properties.

\section*{Références} [1] M. Rossafi, A. Touri, H. Labrigui and A. Akhlidj, Continuous *-K-G-Frame in Hilbert C ${ }^{*}$ Modules, Journal of Function Spaces, $\operatorname{Vol}(2019)$, Article ID 2426978, 5 pages, 2019. [2] M. Rossafi and S. Kabbaj, Continuous *-g-Frame in Hilbert C^{*}-Modules, submitted.

Degenerate parabolic problems with variable exponent and L^{1}-data

A. SABRI 1, A. JAMEA ${ }^{1,2}$ and H. ALAOUI ${ }^{1}$
${ }^{1}$ EMAPI, Faculté des Sciences, Université Chouaib Doukkali, Eljadida.
${ }^{2}$ entre Régional des Métiers de l'Education et de Formation Casablanca Settat.

Abstract

Let $\Omega \subset \mathbb{R}^{d},(d \geq 2)$ be a open bounded domain with a connected Lipschitz boundary $\partial \Omega$ and T be a fixed positive real number. Our aim of this communication is to prove existence results of entropy solutions for the nonlinear degenerate parabolic problem with variable exponent $$
\left\{\begin{array}{c} \left.\frac{\partial u}{\partial t}-\operatorname{div}\left(\omega|\nabla u|^{p(.)-2} \nabla u\right)=f \text { in } Q_{T}:=\right] 0, T[\times \Omega \\ \left.u=0 \text { on } \quad \Sigma_{T}:=\right] 0, T[\times \partial \Omega \\ u(., 0)=u_{0} \quad \text { in } \Omega \end{array}\right.
$$

where $p($.$) is a continuous function defined on \bar{\Omega}$ with $p(x)>1$ for all $x \in \bar{\Omega}$ and ω is a measurable function on Ω, strictly positive and satisfying the following hypotheses

$$
\begin{aligned}
& \left(H_{1}\right): \omega \in L_{l o c}^{1}(\Omega) \text { and } \omega^{\frac{-1}{p(x)-1}} \in L_{l o c}^{1}(\Omega) \\
& \left(H_{2}\right): \omega^{-s(x)} \in L_{l o c}^{1}(\Omega) \text { where } s(x) \in\left(\frac{N}{p(x)}, \infty\right) \cap\left(\frac{1}{p(x)-1}, \infty\right)
\end{aligned}
$$

The datum f is in $L^{1}(\Omega)$.

Références

[1] I. Aydin, Weighted Variable Sobolev Spaces and Capacity, J. Funct. Spaces Appl., Vol. 17,(2012), 17 pages.
[2] F. Andereu, J. M. Mazôn, S. Segura De leon, J. Teledo, Quasi-linear elliptic and parabolic equations in L^{1} with non-linear boundary conditions, Advances in Mathematical Sciences and Applications 7 (1997), pp. 183-213.
[3] Ph. Bénilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre, J.L. Vazquez, An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Annali della Scuola Normale Superiore di Pisa 22 (1995), pp. 241-273.
[4] A. Jamea, A. Alaoui and A. El Hachimi : Existence of entropy solutions to nonlinear parabolic problems with variable exponent and L^{1}-data, Ric. Mat., Vol 67(2), 785-801 (2018).
[5] Y. H. Kim, L. Wang and C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents, J. Math. Anal. Appl., 371 (2010), pp. 624-637.
[6] M. Sanchón and J.M. Urbano : Entropy solutions for the p(x)-Laplace equation. Trans. Amer. Math. Soc., 361 (2009) 6387-6405.

Les applications surjectives préservant le sous espace spectral local pour la somme, le produit, le produit triple et le produit généralisé

Mustapha Ech-Chérif El Kettani ${ }^{1}$ and El Hassan Siar ${ }^{1}$
${ }^{1}$ Laboratoire d'Analyse Mathématique et Applications (LAMA), Université Sidi Mohamed Ben Abdellah, Fès

Abstract

In this talk we discuss the form of surjective maps from $\mathcal{B}(X)$ into itself satisfying

$$
X_{\phi(A) * \phi(B)}(\{\lambda\})=X_{A * B}(\{\lambda\})
$$

for all $A, B \in \mathcal{B}(X)$ and all $\lambda \in \mathbb{C}$, where $X_{A}(\{\lambda\})$ is the local spectral subspace of A associated with $\{\lambda\}$ and $A * B$ is one of the for different kinds of binary operations on operators: The sum $A+B$, the product $A B$, triple product $A B A$ and generalized product of operators.

Références

[1] H. Benbouziane, Y. Bouramdane, M. Ech-Chérif El Kettani, maps preserving local spectral subspace of generalised product of operators, submit.
[2] H. Benbouziane, M. Ech-Chérif El Kettani, I. Herrou, "Local spectral subspace preservers." Rendiconti del Circolo Matematico di Palermo Series 268.2 (2019) : 293-303.
[3] A. Bourhim, T. Ransford, Additive maps preserving local spectrum, Integral Equ. Oper. Theory, 55, 377-385, (2006).
[4] A. Bourhim, J. Mashreghi,A survey on preservers of spectra and local spectra. Contemp. Math, 638, 45-98, (2015).
[5] M. Elhodaibi, A. Jaatit, On additive maps preserving the local spectral subspace. Int. J. Math. Anal.(Ruse), 6, 21-24, (2012).

Sur les séries de Dirichlet multiples

Nabil TAHMI ${ }^{1}$, Abdallah DERBAL ${ }^{2}$
${ }^{1}$ ENS de Laghouat, Algérie.
${ }^{2}$ Laboratoire d'Equations aux Dérivées Partielles Non linéaires, ENS de Kouba, Alger, Algérie.
$$
\text { emails : }{ }^{1} \text { tnabil26@gmail.com, }{ }^{2} \text { abderbal@yahoo.fr }
$$

Résumé

Soit $f_{r}: \mathbb{N}^{r} \longrightarrow \mathbb{C}$ une fonction arithmétique de r variables, où $r \geq 2$. Nous étudions les séries de Dirichlet multiples définies par

$$
D\left(f_{r}, s_{1}, \cdots, s_{r}\right)=\sum_{\substack{n_{1}, \cdots, n_{r}=1 \\\left(n_{1}, \cdots, n_{r}\right)=1}}^{\infty} \frac{f_{r}\left(n_{1}, \cdots, n_{r}\right)}{n_{1}^{s_{1}} \cdots n_{r}^{s_{r}}} .
$$

où $f_{r}\left(n_{1}, \cdots, n_{r}\right)=f\left(n_{1}\right) f\left(n_{2}\right) \cdots f\left(n_{r}\right)$ et f est une fonction arithmétique complètement multiplicative ou spécialement multiplicative d'une seule variable. Nous obtenons des formules pour ces séries exprimées par un produit fini sur tous les nombres premiers et les fonctions L de Dirichlet. La preuve utilise la formule du produit eulérien généralisé. De plus, nous appliquons ces formules sur quelques séries de Dirichlet multiples associées à certaines fonctions complètement multiplicatives et spécialement multiplicatives, et exprimons ces séries par la fonction zêta de Riemann.

Abstract

Let $f_{r}: \mathbb{N}^{r} \longrightarrow \mathbb{C}$ be an arithmetic function of r variables, where $r \geq 2$. We study the multiple Dirichlet series defined by

$$
D\left(f_{r}, s_{1}, \cdots, s_{r}\right)=\sum_{\substack{n_{1}, \cdots, n_{r}=1 \\\left(n_{1}, \cdots, n_{r}\right)=1}}^{\infty} \frac{f_{r}\left(n_{1}, \cdots, n_{r}\right)}{n_{1}^{s_{1}} \cdots n_{r}^{s_{r}}} .
$$

where $f_{r}\left(n_{1}, \cdots, n_{r}\right)=f\left(n_{1}\right) f\left(n_{2}\right) \cdots f\left(n_{r}\right)$ and f is a completely or specially arithmetic function of a single variable. We obtain formulas for these series expressed by an infinite product over all prime numbers and the Dirichlet L-functions. The proof use the formula of Eulerian product generalized. In addition, we apply these formulas on the multiple Dirichlet series associeted of certain completely multiplicative functions and specially multiplicative functions, and express these series by the Riemann zeta function.

Références

[1] L. Tо́тн, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69(2011), $97-110$.
[2] L. То́тн, Multiplicative arithmetic functions of several variables: a survey, in Mathematics Without Boundaries, Surveys in Pure Mathematics. Th. M. Rassias, P. Pardalos (Eds.), Springer, New York, 2014, 483 - 514. arXiv :1310.7053[math.NT]
[3] L. Tóth, Two generalizations of the Busche-Ramanujan identities, Int. J. Number Theory, 9(2013), 1301 - 1311.
[4] P.J.McCarthy, Introduction to Arithmetical functions, (Springer, 1986).
[5] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag Berlin, 1976.
[6] Tomokazu Onozuka, The multiple Dirichlet product and the multiple Dirichlet series, Preprint, 2016, arXiv :1601.05924v1 [math.NT].

3nd International Conference on Mathematics and Its Applications (ICMACASA2020), application

K. Tahri

Labo. Modelisation Stochastique et Deterministe (LaMSD), University mohammed first, FS Oujda

In this communication, we present a new theorem concerning a representation of set valued regular martingales, the proof is based on martingale selectors approach. As applications, various convergence results of set valued martingales are provided.
The notion of multivalued martingale is an extension of real and vector martingales; In fact, the values of random variables involved are closed and convex subsets of a normed space, instead of real numbers or vectors. Multivalued martingale has been studied by many authors; see Akhiat et al, (2010); Choukairi,(1990); Hess, (1991); Neveu, (1972); Tahri, (2012); Wang and Xue, (1994) and so on. In particular, Hiai and Umegaki, (1977) presented the theory of set valued conditional expectations which was one of the basic foundation of the study of set valued martingale. It is well known in the literature that uniformly intergrable martingale with values in RNP Banach space is a regular martingale. See Egghe, (1984); Chatterji, (1968); Neveu, (1972). This result has been extended by Hiai and Umegaki, (1977) to bounded set valued martingale with values in convex and closed subset of RNP Banach space E with strongly separable dual E^{*}. Farther Choukairi, (1990) has studied the same problem where E is reflexive and separable. The purpose of this work is to go on with the study of multivalued martingales (particulary, regular martingales) with closed convex values in a separable Banach space E.

References

[ACE] F. Akhiat, C. Castaing and F. Ezzaki, Some various \tilde{A} convergence results for multivalued martingales, Adv. Math.Econ. Vol 13 (2010), 1-33.
[CV] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin and New York, 1977.
[HE] El Harami, M., Ezzaki, F.: General Pettis Conditional Expectation and convergence the- orems, International Journal of Mathematics and Statistics, Volume: 11, 91-111 (2012)
[AH] El Amri, K., Hess, C.: On the pettis integral of Closed Valued Multifunctions, Set-Valued Analysis 8, 329-360 (2000)
[HU] F.Hiai and H. Umegaki, Integrals, conditional expectations.and martingales of multivalued functions. J.Multivarraite Anal., vol. 7, (1977), 149-182.
[N] N.Neveu, martingales \tilde{A} temps discret, Masson et Cie, Paris 1972.
[U] J.J. Uhl, Jr., Martingales of strongly measurable Pettis integrable functions, Trans. of Amerrican Math. Soc., Vol. 167, 369-378, (1972).
[Z] H.Ziat, Approximation and Decomposability in the Space of Pettis Integrable Func- tions, Int. Journal of Math. Analysis, Vol. 6, no. 31, 1519-1537 (2012)
[V] M. Valadier, On conditional Expectation of random sets, Annali Math. Pura Appl. (iv), Vol. CXXVI, (1980), 81-91.

Controlled continuous g-frames in Hilbert C^{*}-module

Abdeslam.TOURI ${ }^{1}$, Samir.KABBAJ ${ }^{2}$
${ }^{1}$ Laboratoire AMGNCA, Université Ibn Tofail, Kénitra
${ }^{2}$ Laboratoire AMGNCA, Université Ibn Tofail, Kénitra

Abstract

Frame Theory has a great revolution in recent years, this Theory have been extended from Hilbert spaces to Hilbert C^{*}-modules. We study of the concept of Controlled Continuous g-Frames in Hilbert C^{*}-Modules. Also we give some properties.

Références

[1] S. T. Ali and J. P. Antoine and J. P. Gazeau, Continuous frames in Hilbert spaces, Annals of Physics, 222 (1993) : 1-37
[2] A. Askari-Hemmat and M. A. Dehghan and M. Radjabalipour, Generalized frames and their redundancy, Proc. Amer. Math. Soc., 129 (2001) no. 4 : 1143-1147
[3] A. Askari-Hemmat and M. A. Dehghan and M. Radjabalipour, Generalized frames and their redundancy, Proc. Amer. Math. Soc. , 129 (2001) no. 4 : 1143-1147
[4] L. Arambašić , On frames for countably generated Hilbert \mathcal{C}^{*}-modules, Proc. Amer. Math. Soc. 135 (2007) 469-478.
[5] J.B.Conway ,A Course In Operator Theory,AMS,V.21,2000.
[6] I. Daubechies and A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
[7] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.

